

Addressing Advanced Mixed-Signal Verification Scenarios

by Developing a UVM Framework for Analog Models
Simul Barua - Ulkasemi, Inc.

Shahriar Kabir - Ulkasemi, Inc.
Henry Chang - Designer’s Guide Consulting, Inc.

Agenda
• Motivation and purpose of the AMSV utility framework
• Structure of the framework
• Case study: application of the framework
• Framework implementation in models and testbench
• Simulation results
• Summary & future scopes

Increased Complexity in IC Verification
• Modern applications outpaces design complexity
• Declining verification success rates
• Key factors include analog design issues and mixed-signal interface

bugs.
• Insights from our previous research

• Integrating validated functional analog models enhances chip-level
verification.

• Improved bug detection at the system level
• Remaining gap

• Traditional methodologies still lack the robustness needed to address more
complex system requirements

Evolving Verification Needs for the Digital Twin
• Must include analog elements
• System performance

• Simulating temperature effects, parametric variations, and analog non-
idealities

• Ensuring real-world performance criteria are met

• Safety Requirements
• Modeling how analog blocks, subsystems, and systems can fail
• Verifying fault tolerance and mitigation strategies

• Conventional verification methodologies lack the support needed for
these critical features

Limitations of Traditional Methodologies
• Transistor-level simulations for real-world complex scenarios

• Accurate, yet impractical for system-level verification
• Environmental effects (e.g. temperature) demand prolonged runs

• Verifying critical features using system-level testbenches
• No direct control over environmental factors (e.g. temperature)
• Difficult to observe system responses (e.g. thermal shutdowns)
• Predictable failures require design modifications accommodating fault conditions

• Need for a flexible and efficient approach
• Designs must accommodate the verification of both environmental and safety

features
• System-level verification must efficiently handle complex, mixed-signal scenarios

efficiently
• Faster simulation time

Overcoming the Limitations
• Leveraging analog models

• Feasible simulation speeds compared to transistor-level
• Straightforward incorporation of complex effects (e.g. environmental stress,

parametric shifts)
• Enables real-world scenario modeling (e.g. AI performance under analog

degradation)

• Enhancing the UVM Testbench
• Enhanced monitoring and control for analog models

• Bridging the gap
• A dedicated mechanism is required to enhance both the analog model and

the UVM testbench

The AMSV Utility Framework
• Overview

• Leverages SystemVerilog OOP constructs
• Enhances analog models and system-level UVM testbench
• Efficient communication between the models and the testbench
• Simulates real-world conditions: temperature effects, parametric variations, and

failures
• Addressing limitations of traditional methodologies

• Enables modeling of real-world scenarios
• Faster, practical alternative to slow transistor-level simulations
• Enables direct control and monitoring of environmental impacts

• Key features
• Introduces bidirectional data flow for advanced observation and control without

compromising pin accuracy
• Dynamic parameter adjustment from UVM testbench
• Continuous fault detection and debugging via model-to-testbench reporting

Structure of the AMSV Framework

Stores configuration details and parameters
for each analog model

Centralized resource for system-wide
variables

• SystemVerilog package with OOP classes,
LUTs, pre-defined macros, and utilities

Provide essential functions for
framework setup, model management,

and dynamic parameter control.

Code Snippet of the AMSV Utility Package

Pre-defined Utility Macros
• Simplify integration and reduce repetitive code
• Ensure consistent usage across models and verification environments
• Minimize complexity, making the framework more accessible and efficient
• Key Macros

• Model registration macros
• Global parameter macros
• Signal monitoring macros
• Fault reporting macros

Case Study: Application of the AMSV
Framework
• Design Overview

• System-on-chip (SoC) design with digital and analog components.
• Includes a Power Management Unit (PMU) and Phase-Locked Loop (PLL)

• Key Objectives
• Integrate AMSV framework with analog models and UVM testbench
• Verify complex scenarios like environmental impacts and safety mechanisms

• Critical analog components
• PLL: sensitive to system temperature, leading to frequency drift; monitored by a

digital control unit for compensation
• Thermal shutdown (TSD): monitors system temperature; designed to shut down

upon reaching unsafe limits

Case Study: AMSV Integration and Verification
Scenarios
• Verification scenarios

• Verify temperature effects on PLL
frequency drift

• Assess system response when the
TSD block fails to trigger

• AMSV framework integration
• Configure parameters and inject

faults via UVM testbench
• Real-time control and monitoring

through the AMSV framework

Modeling Analog Blocks & AMSV Integration
• Used SystemVerilog discrete

electrical (user-defined
nettype) approach

• Generated validated models
and self-checking MVS
testbenches with the Model-
in-Minutes (MiM) tool

• Automatically generates models
from a specification

• Allows user-defined custom
code integration

• Enabled seamless AMSV
framework integration across
multiple models

`timescale 1s/1ps
// Importing AMSV Utility Framework Package
import amsv_utils_pkg::*;
// Include the AMSV Utility Macros
`include "amsv_utils_macros.sv"
// MODULE HEADER {{{1
module VCO (
 output out, // VCO Output
 input in, // Input control voltage of the VCO
 input[7:0] vcoCF, // Settings for VCO center frequency
 input enable, // Enable Pin
 input bias, // Bias Input
 input vdda, // Supply
 input gnda // Ground
);
// Registering model to AMSV Utilities
`amsv_utils_register_model("VCO", "vco")
// Discrete-Electrical (DE) Transceivers {{{2
real in$Vobs, in$Iobs, in$Idrv, in$Gdrv;
DE_norton Xtcvr_in (in, in$Vobs, in$Iobs, in$Idrv, in$Gdrv);
...........................
// Local variable to sync with AMSV Global Temperature Parameter [C]
real temp = 27;
...........................
// Sync temp variable with Global Parameter 'temperature'
`amsv_utils_sync_globals(temp, "temperature")
...........................
// Discrete Variables {{{2
assign Kvco = 25e6;
assign delta_T = (temp + 273) - TEMP_NOMINAL;
assign temp_freq_drift = TEMP_COEFF*delta_T;
...........................
always @(posedge osc) Ctrl <= min(max(in$Vobs - 1.25+0, -500e-3+0), 500e-3+0);
assign F0 = 2.374e9 + 500e3*vcoCF_val;
assign f = F0 + (Kvco*Ctrl) - temp_freq_drift;
always wait (On) osc = #(`fromSeconds(max(500e-3/f, `TIME_PREC))) ~osc;
assign out = osc;
...........................
// ASSERTIONS {{{1
// Check for V(vdda) out of range (1.7V to 1.9V) {{{2
assign #(`fromSeconds(25e-9), 0) _faults.V_vdda = !((
 (1.7 <= vdda$Vobs) && (vdda$Vobs <= 1.9))
 || !_locals.enableAsserts);
always @(_faults.V_vdda)_reportFault(_faults.V_vdda, "V(vdda) out of range");
...........................
endmodule

Integrating the AMSV Framework into Models
• `amsv_utils_register_model macro

registers the model in Model LUT
• `amsv_utils_sync_global macro

synchronizes model variable temp
with Global LUT parameter
temperature

• Models frequency drift due to global
temperature changes

• AMSV framework reports block-level
assertions directly to the system-level
testbench

Importing the AMSV
package and macros

Registering the model to
the Model LUT

Synchronizing local
variable temp with
global temperature

Modeling
temperature-induced

frequency drift

Block-level self
reporting assertions

• Testbench-controlled fault injection
mechanism in the Thermal Shutdown
(TSD) model

• Synchronized with global tsd_force_fail
parameter via amsv_utils_sync_globals
macro

• Bypasses shut down even as the
temperature rises

• Allows system behavior analysis under
failure conditions

Implementing Safety-Critical Scenarios

Integration into the UVM Testbench
• Import amsv_utils_pkg at the testbench top-level
• Create a singleton instance using the create_amsv_utils method
• Global testbench access through UVM configuration database

Accessing AMSV Utilities in UVM
• Retrieve the AMSV instance from the UVM configuration database
• Initialize global parameters using AMSV utility methods

• Objective: AMSV utility global parameter
variation and system behavior verification

• Test Scenarios & Expected Outcomes
1.Nominal condition (27°C): PLL achieves stable

lock
2.Gradual increase (60°C): PLL maintains lock as

the feedback loop compensates
3.Rapid increase (65°C): PLL controller adjusts

VCO frequency; lock achieved within 250µs
4.Exceeding operational range (85°C): TSD block

triggers shutdown, verifying protection
5.Recovery check (65°C): PLL resumes

operation, confirming proper TSD recovery
6.TSD failure simulation (90°C, tsd_force_fail =

1): Verifies system response without TSD
protection

Test Cases

Simulation Results
1 2 3 4 5 6

27°C: PLL establishes
a stable lock

60°C: PLL maintains lock
(loop compensation)

65°C: system adjusts
vcoCF to regain lock

85°C: TSD activates,
shutting down PLL

65°C: TSD resets, PLL reactivated,
confirms safe system recovery

(90°C, tsd_force_fail=1): TSD inactive,
system adjusted vcoCF maxed ('d255),

but PLL remains unstable

• Introduced as an innovative approach to mixed-signal verification
• Seamlessly integrates analog models with UVM testbenches, enabling

efficient system-level verification
• Simulates real-world conditions such as temperature variations,

environmental changes, and fault conditions
• Overcomes traditional verification limitations by providing speed, flexibility,

and real-time parameter control beyond transistor-level simulations
• Enhances connectivity verification, system-level assertions, and coverage of

analog-digital interactions
• Establishes a new standard in efficiency and accuracy, ensuring robust

validation of complex mixed-signal designs

AMSV Framework – Key Contributions

Future Directions
• Expanding capabilities

• Future updates will include expanded model libraries for broader AMS applications
• Support for automatic mixed-signal connectivity check

• The Road Ahead
• A transformative shift in mixed-signal verification, driving efficiency and innovation
• Encouraging industry-wide adoption to refine and advance verification

methodologies

Questions

• Any questions

	�Addressing Advanced Mixed-Signal Verification Scenarios by Developing a UVM Framework for Analog Models
	Agenda
	Increased Complexity in IC Verification
	Evolving Verification Needs for the Digital Twin
	Limitations of Traditional Methodologies
	Overcoming the Limitations
	The AMSV Utility Framework
	Structure of the AMSV Framework
	Code Snippet of the AMSV Utility Package
	Pre-defined Utility Macros
	Case Study: Application of the AMSV Framework
	Case Study: AMSV Integration and Verification Scenarios
	Modeling Analog Blocks & AMSV Integration
	Integrating the AMSV Framework into Models
	Slide Number 15
	Integration into the UVM Testbench
	Accessing AMSV Utilities in UVM
	Slide Number 18
	Simulation Results
	AMSV Framework – Key Contributions
	Future Directions
	Questions

