2025 DESIGN AND VERIFICATION THE DVC DVC DVC DVC CONFERENCE AND EXHIBITION

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 24-27, 2025

Addressing Advanced Mixed-Signal Verification Scenarios by Developing a UVM Framework for Analog Models Simul Barua - Ulkasemi, Inc. Shahriar Kabir - Ulkasemi, Inc. Henry Chang - Designer's Guide Consulting, Inc.

Agenda

- Motivation and purpose of the AMSV utility framework
- Structure of the framework
- Case study: application of the framework
- Framework implementation in models and testbench
- Simulation results
- Summary & future scopes

Increased Complexity in IC Verification

- Modern applications outpaces design complexity
- Declining verification success rates
- Key factors include analog design issues and mixed-signal interface bugs.
- Insights from our previous research
 - Integrating validated functional analog models enhances chip-level verification.
 - Improved bug detection at the system level
- Remaining gap
 - Traditional methodologies still lack the robustness needed to address more complex system requirements

Evolving Verification Needs for the Digital Twin

- Must include analog elements
- System performance
 - Simulating temperature effects, parametric variations, and analog nonidealities
 - Ensuring real-world performance criteria are met
- Safety Requirements
 - Modeling how analog blocks, subsystems, and systems can fail
 - Verifying fault tolerance and mitigation strategies
- Conventional verification methodologies lack the support needed for these critical features

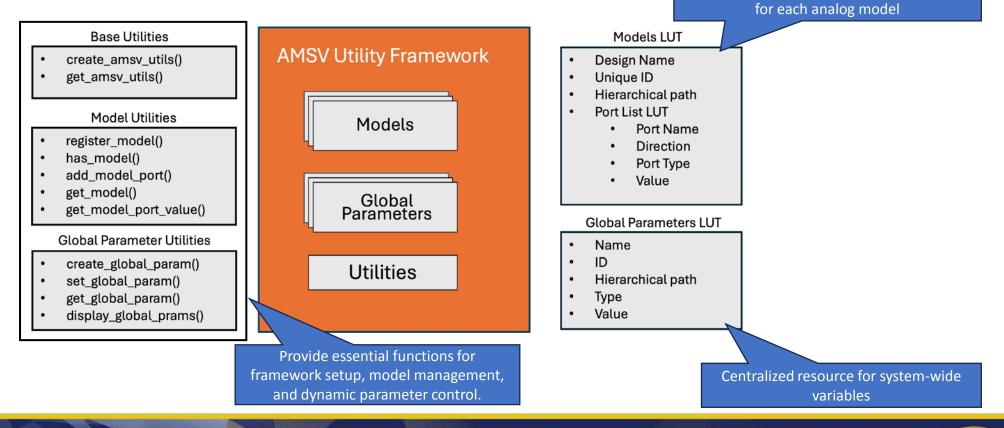
Limitations of Traditional Methodologies

- Transistor-level simulations for real-world complex scenarios
 - Accurate, yet impractical for system-level verification
 - Environmental effects (e.g. temperature) demand prolonged runs
- Verifying critical features using system-level testbenches
 - No direct control over environmental factors (e.g. temperature)
 - Difficult to observe system responses (e.g. thermal shutdowns)
 - Predictable failures require design modifications accommodating fault conditions
- Need for a flexible and efficient approach
 - Designs must accommodate the verification of both environmental and safety features
 - System-level verification must efficiently handle complex, mixed-signal scenarios efficiently
 - Faster simulation time

Overcoming the Limitations

- Leveraging analog models
 - Feasible simulation speeds compared to transistor-level
 - Straightforward incorporation of complex effects (e.g. environmental stress, parametric shifts)
 - Enables real-world scenario modeling (e.g. AI performance under analog degradation)
- Enhancing the UVM Testbench
 - Enhanced monitoring and control for analog models
- Bridging the gap
 - A dedicated mechanism is required to enhance both the analog model and the UVM testbench

The AMSV Utility Framework


- Overview
 - Leverages SystemVerilog OOP constructs
 - Enhances analog models and system-level UVM testbench
 - Efficient communication between the models and the testbench
 - Simulates real-world conditions: temperature effects, parametric variations, and failures
- Addressing limitations of traditional methodologies
 - Enables modeling of real-world scenarios
 - Faster, practical alternative to slow transistor-level simulations
 - Enables direct control and monitoring of environmental impacts
- Key features
 - Introduces bidirectional data flow for advanced observation and control without compromising pin accuracy
 - Dynamic parameter adjustment from UVM testbench
 - Continuous fault detection and debugging via model-to-testbench reporting

Structure of the AMSV Framework

• SystemVerilog package with OOP classes, LUTs, pre-defined macros, and utilities

Stores configuration details and parameters

ESIGN AND VERIFIC

EAN JOEE, CA, UEA FEBRUARY 24-27, 2025

Code Snippet of the AMSV Utility Package

package amsv_utils_pkg; // Model LUT class model utilities; // Global Paremeter LUT class global utilities; // Other Helper Signals of the package // The Base Class of the AMSV Utility Framework class amsv utilities; // AMSV utility singleton class static amsv_utilities amsv_utils = null; // Lookup table consisting model details model utilities models[string]; // Lookup table for global variables global utilities globals[string]; // Utilities // Private constructor to prevent direct instantiation extern protected function new(string name); // Create instance of AMSV Utility extern static function amsv utilities create amsv utils(string name); // Get instance of AMSV Utility extern static function amsv_utilities get_amsv_utils();

// Model LUT Utilities

// Registers Analog model in lookup table with name, unique ID and hierarachy extern function void register_model(string name = "", string id = "", string hier = ""); // Returns 1 when model exists with provided unique ID extern function bit has_model(string id); // Adds port information of registered model extern function void add_model_port(string id, string name, string dir, string port_type); // Returns model utility based on unique ID extern function model_utilities get_model(string id); // Returns the port description of the model based on unique model ID and port name extern function port_t get_model_port(string id, string port_name); // Global Parameter Utilities // Creates global variable with name, data type and value extern function void create_global_param(string name = "", string data_type = "", real value); // Sets global value during runtime extern function void set_global_param(string name, real value); // Returns global value with provided name extern function real get_global_param(string name); // Returns 1 when global value with provided name exists extern function bit has global param(string name);

// Display Utilities
endclass
endpackage

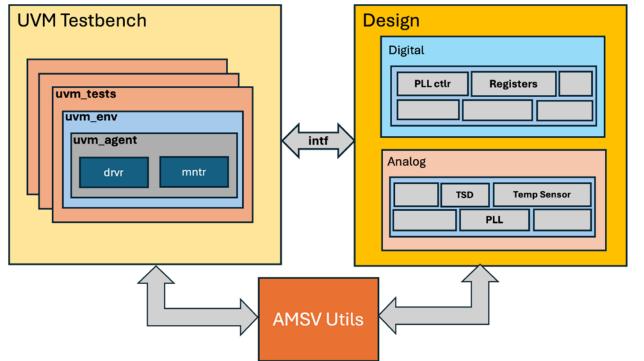
Pre-defined Utility Macros

- Simplify integration and reduce repetitive code
- Ensure consistent usage across models and verification environments
- Minimize complexity, making the framework more accessible and efficient
- Key Macros
 - Model registration macros
 - Global parameter macros
 - Signal monitoring macros
 - Fault reporting macros

```
`amsv_utils_register_model(model_name, unique_id, pin_list, param_list)
// Registers the model with specified pins and parameters in the Model LUT.
` amsv_utils_sync_globals(VAR_NAME, GLOBAL_PARAM_NAME)
// Synchronizes global parameter: GLOBAL_PARAM_NAME value set by the testbench
// for continuous observation by the models.
`amsv_utils_monitor_signal(model_name, hierarchical_path, signal)
// Enables real-time monitoring of a specified signal, allowing the
```

- // testbench to track and debug signals.
- `amsv_utils_report_fault(fault_condition, message)
- // Reports a fault condition directly from the model to the UVM testbench

Case Study: Application of the AMSV Framework

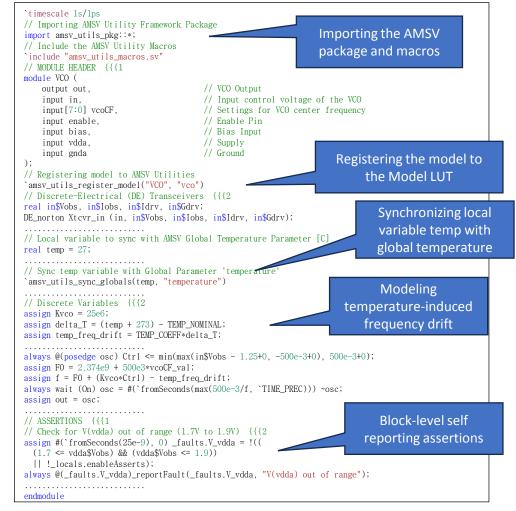

- Design Overview
 - System-on-chip (SoC) design with digital and analog components.
 - Includes a Power Management Unit (PMU) and Phase-Locked Loop (PLL)
- Key Objectives
 - Integrate AMSV framework with analog models and UVM testbench
 - Verify complex scenarios like environmental impacts and safety mechanisms
- Critical analog components
 - PLL: sensitive to system temperature, leading to frequency drift; monitored by a digital control unit for compensation
 - Thermal shutdown (TSD): monitors system temperature; designed to shut down upon reaching unsafe limits

Case Study: AMSV Integration and Verification Scenarios

- Verification scenarios
 - Verify temperature effects on PLL frequency drift
 - Assess system response when the TSD block fails to trigger
- AMSV framework integration
 - Configure parameters and inject faults via UVM testbench
 - Real-time control and monitoring through the AMSV framework

Modeling Analog Blocks & AMSV Integration

- Used SystemVerilog discrete electrical (user-defined nettype) approach
- Generated validated models and self-checking MVS testbenches with the Modelin-Minutes (MiM) tool
 - Automatically generates models from a specification
 - Allows user-defined custom code integration
 - Enabled seamless AMSV framework integration across multiple models


Specifications Name			V	со								
Description			PI	LL W	oltage Controlled Oscillat	or with AMS	SV Utility Framework					
Ports (Hide)												
Name ?	Dir ?	Port ty	pe 🙎		Description 2		Range 🕐	Behavior ?				
out	output	~ digita	1	~	VCO Output			osc				
in	input	✓ voltage	je	~	Input control voltage of the V	/co						
[7:0]vcoCF	input	nput v digital		 Settings for VCO center frequencies 		uency	nox	vcoCF_val wi	vcoCF_val with protect			
enable	input	put 🗸 digital		~	Enable Pin			On = enable && !Fault with smooth			oth	
bias	input	~ ibias		~	Input Bias Current		5uA to 20uA					
vdda	input	~ suppl	y	~	Supply		1.7V to 1.9V	l = On*10u				
gnda	input v ground			~	Ground		-10mV to 10mV					
Kvco	wre	al			• ///	25M					MHz/	
temp	real				variable to sync with AMSV Temperatur Parameter					27	С	
Кусо	wre	al	~ V	/oltag	e sensitivity	25M					MHz/V	
delta_T	wre	al	~ Te	emper	rature Difference	(temp+273)-1	TEMP_NOMINAL				к	
temp_freq_dri	rift wre		✓ Fr	reque	ncy drift due to temperature	TEMP_COEF	F*delta_T				Hz	
Ctrl rea		ai	· •								v	
	real		~ C	ontro	I Voltage		25, -500m, 500m)	posedge osc				
F0	real wre	al	~ Co	ontro	Frequency	2.374G + 500	lk*vcoCF_val	posedge osc			Hz	
F0 f	real wre wre	al al	 C C C C 	ontro enter scilla	Frequency tor Frequency	2.374G + 500 F0 + (Kvco*C	lk*vcoCF_val Ctrl)-temp_freq_drift	posedge osc				
FO	real wre	al al	 C C C C 	ontro	Frequency tor Frequency	2.374G + 500	lk*vcoCF_val Ctrl)-temp_freq_drift	posedge osc	enable	0	Hz	
F0 f	real wre wre reg e (Hide)	al al	 Col Col	ontro enter scilla	Frequency tor Frequency tor Code to Inse	2.374G + 500 F0 + (Kvco*C #(0.5/f) ~osc	lk*vcoCF_val Ctrl)-temp_freq_drift	posedge osc	enable	0	Hz	
F0 f osc User Code Location 2	real wre wre reg e (Hide)	al al	 Col Col	ontro enter scilla	Frequency tor Frequency tor Code to Inse // Import import am // Includ	2.374G + 500 F0 + (Kvco*C #(0.5/f) ~osc art 2 ing AMSV U sv_utils_p e the AMSV	kt*vcoCF_val ctrl)-temp_freq_drift Htility Framework Package	posedge osc	enable	0	Hz	
F0 f osc User Code Location 2	real wre wre reg e (Hide) : before	al al module	 Colored <	center enter escillat	Frequency tor Frequency tor Code to Inse // Import import am // Includ `include v // Regist	2.374G + 500 F0 + (Kvco*C #(0.5/f) - osc ert [2] ing AMSV U sv_utils_p e the AMSV "amsv_util ering mode	ktvcoCF_val Ctrl)-temp_freq_drift ttility Framework Package ukg::*; Utility Macros	posedge osc	enable	0	Hz	

Integrating the AMSV Framework into Models

- `*amsv_utils_register_model* macro registers the model in Model LUT
- `amsv_utils_sync_global macro synchronizes model variable temp with Global LUT parameter temperature
- Models frequency drift due to global temperature changes
- AMSV framework reports block-level assertions directly to the system-level testbench

Implementing Safety-Critical Scenarios

- Testbench-controlled fault injection mechanism in the Thermal Shutdown (TSD) model
 - Synchronized with global tsd_force_fail parameter via amsv_utils_sync_globals macro
 - Bypasses shut down even as the temperature rises
 - Allows system behavior analysis under failure conditions

```
`timescale 1s/1ps
// Importing AMSV Utility Package and Macros
import amsv_utils_pkg::*;
`include "amsv macros.sv"
// Module Declaration
module TSD(
    tsd.
    trim,
    enable,
    por_b,
    i_ptat,
    vdda,
    anda
);
// Parameters
      . . . . . . . . . . . . . . . . . . .
// Port Types and Declaration
// Registering model to AMSV Utilities
`amsv_utils_register("TSD", "PLL-TSD")`
// Syncing with Global Variable tsd_force_fail
 amsv_utils_sync_globals(tsd_force_fail, "tsd_force_fail")
// Discreate Behavior
// Calculate temperature from i_ptat
// Drive TSD
// If tsd_force_fail = 1 tie the output to 0
assign tsd = (tsd_force_fail==0) ? tsd_reg : 0;
// Analog Assertions
endmodule
```


Integration into the UVM Testbench

- Import *amsv_utils_pkg* at the testbench top-level
- Create a singleton instance using the create_amsv_utils method
- Global testbench access through UVM configuration database

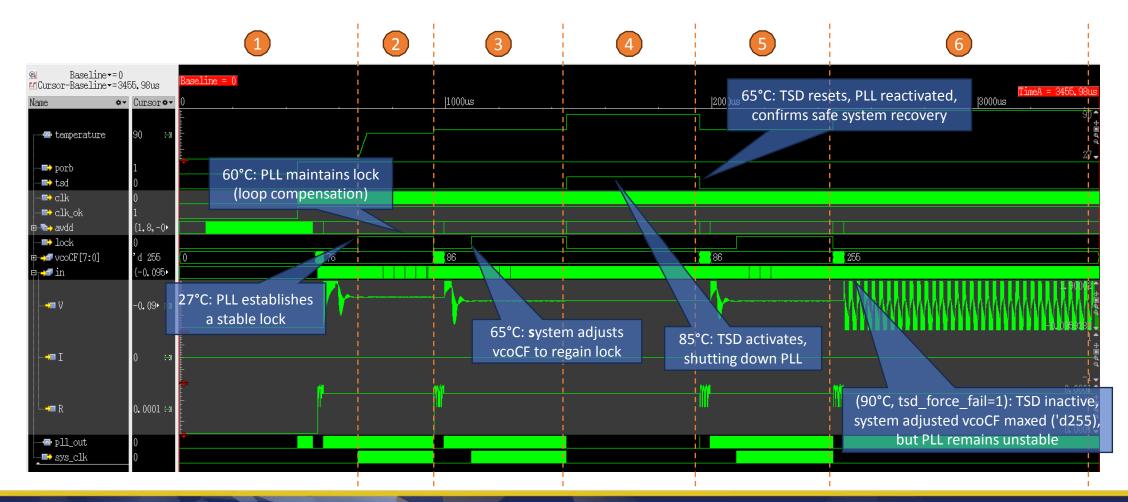
<pre>import uvm_pkg::*; //importing amsv_utils package and macros import amsv_utils_pkg::*; `include "amsv_utils_macros.sv"</pre>	
<pre>module tb_top_ahb; // PLL DUT instance pll_top DUT_top (); initial begin</pre>	
<pre>// Creating amsv singleton instance amsv_utilities amsv_utils = amsv_utilities::cr // Set the amsv instance in the uvm testbench uvm_config_db#(amsv_utilities)::set(null, "*",</pre>	environment
<pre>run_test(); end endmodule</pre>	

Accessing AMSV Utilities in UVM

- Retrieve the AMSV instance from the UVM configuration database
- Initialize global parameters using AMSV utility methods

<pre>class pll_test extends uvm_test; `uvm_component_utils(pll_test)</pre>	
<pre>virtual function void build_phase(uvm_phase phase);</pre>	
<pre>// Getting AMSV Utility from tb_top if(!uvm_config_db #(amsv_utilities)::get(this,"","amsv_utils",amsv_utils)) `uvm_fatal("AMSV utilites","AMSV utility is not found") end</pre>	begin
<pre>endfunction virtual function void connect_phase(uvm_phase phase);</pre>	
<pre>// Creating global parameters amsv_utils.create_global_param("temperature", "real", 27.0); amsv_utils.create_global_param("tsd_force_fail", "bit", 0);</pre>	
endfunction	
<pre>task run_phase(uvm_phase phase);</pre>	
endtask endclass	

Test Cases


- Objective: AMSV utility global parameter variation and system behavior verification
- Test Scenarios & Expected Outcomes
 - 1. Nominal condition (27°C): PLL achieves stable lock
 - 2. Gradual increase (60°C): PLL maintains lock as the feedback loop compensates
 - 3. Rapid increase (65°C): PLL controller adjusts VCO frequency; lock achieved within 250µs
 - 4. Exceeding operational range (85°C): TSD block triggers shutdown, verifying protection
 - 5. Recovery check (65°C): PLL resumes operation, confirming proper TSD recovery
 - 6.TSD failure simulation (90°C, tsd_force_fail = 1): Verifies system response without TSD protection

```
class pll_test extends uvm_test;
   task run_phase(uvm_phase phase);
       super.run_phase(phase);
       phase.raise_objection(this);
           // Starting the simulation with nominal temperature
           amsv_utils.set_global_value("temperature", 27)
           // Wait for the power-up sequence to finish
           .....
           // Check if the PLL lock interrupt is high within 250us
           check_pll_lock_time(250e-6);
           // Vary the temperature to 60C and check the PLL is still locked
           for (real r=27; r <= 60; r=r+1 ) begin
              amsv_utils.set_global_value("temperature", r);
              #1us;
               check_pll_lock_time(0);
           end
           #250us;
           // Setting temperature to 65C and check if the system adjust
           // the VCOCF control to get the desired frequency
           amsv_utils.set_global_value("temperature", 65);
           check_vcocf_register(.temp(65));
           check_pll_lock_time(250e-6);
           // Setting temperature to 85 C and check if the TSD is activated
           amsv_utils.set_global_value("temperature", 85);
           check_tsd(1);
           .....
           // Check if TSD is disabled once Temp is lowered to 65C
           // and if PLL becomes locked within 250us
           amsv_utils.set_global_value("temperature", 65);
           check_tsd(0);
           check pll lock time(250e-6);
           .....
           // Forcing TSD to fail through global params
           // and setting temperature to 90C and check if
           // the design has any safety mechanisms for TSD failure
           amsv_utils.set_global_value("tsd_force_fail", 1);
           #1us:
           amsv_utils.set_global_value("temperature", 90);
           check_tsd(0);
           check_vcocf_register(.temp(90));
           check_pll_lock_time(250e-6);
           .....
        phase.drop_objection(this);
   endtask
endclass
```


Simulation Results

AMSV Framework – Key Contributions

- Introduced as an innovative approach to mixed-signal verification
- Seamlessly integrates analog models with UVM testbenches, enabling efficient system-level verification
- Simulates real-world conditions such as temperature variations, environmental changes, and fault conditions
- Overcomes traditional verification limitations by providing speed, flexibility, and real-time parameter control beyond transistor-level simulations
- Enhances connectivity verification, system-level assertions, and coverage of analog-digital interactions
- Establishes a new standard in efficiency and accuracy, ensuring robust validation of complex mixed-signal designs

Future Directions

- Expanding capabilities
 - Future updates will include expanded model libraries for broader AMS applications
 - Support for automatic mixed-signal connectivity check
- The Road Ahead
 - A transformative shift in mixed-signal verification, driving efficiency and innovation
 - Encouraging industry-wide adoption to refine and advance verification methodologies

Questions

• Any questions

