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Agenda 
• Motivation and purpose of the AMSV utility framework 
• Structure of the framework 
• Case study: application of the framework 
• Framework implementation in models and testbench 
• Simulation results 
• Summary & future scopes 



Increased Complexity in IC Verification 
• Modern applications outpaces design complexity  
• Declining verification success rates 
• Key factors include analog design issues and mixed-signal interface 

bugs. 
• Insights from our previous research 

• Integrating validated functional analog models enhances chip-level 
verification. 

• Improved bug detection at the system level 
• Remaining gap 

• Traditional methodologies still lack the robustness needed to address more 
complex system requirements 

 



Evolving Verification Needs for the Digital Twin 
• Must include analog elements 
• System performance 

• Simulating temperature effects, parametric variations, and analog non-
idealities 

• Ensuring real-world performance criteria are met 

• Safety Requirements 
• Modeling how analog blocks, subsystems, and systems can fail 
• Verifying fault tolerance and mitigation strategies 

• Conventional verification methodologies lack the support needed for 
these critical features 



Limitations of Traditional Methodologies 
• Transistor-level simulations for real-world complex scenarios 

• Accurate, yet impractical for system-level verification 
• Environmental effects (e.g. temperature) demand prolonged runs 

• Verifying critical features using system-level testbenches 
• No direct control over environmental factors (e.g. temperature) 
• Difficult to observe system responses (e.g. thermal shutdowns) 
• Predictable failures require design modifications accommodating fault conditions 

• Need for a flexible and efficient approach 
• Designs must accommodate the verification of both environmental and safety 

features 
• System-level verification must efficiently handle complex, mixed-signal scenarios 

efficiently 
• Faster simulation time 



Overcoming the Limitations 
• Leveraging analog models 

• Feasible simulation speeds compared to transistor-level 
• Straightforward incorporation of complex effects (e.g. environmental stress, 

parametric shifts) 
• Enables real-world scenario modeling (e.g. AI performance under analog 

degradation) 

• Enhancing the UVM Testbench 
• Enhanced monitoring and control for analog models 

• Bridging the gap 
• A dedicated mechanism is required to enhance both the analog model and 

the UVM testbench 
 



The AMSV Utility Framework 
• Overview 

• Leverages SystemVerilog OOP constructs 
• Enhances analog models and system-level UVM testbench 
• Efficient communication between the models and the testbench 
• Simulates real-world conditions: temperature effects, parametric variations, and 

failures 
• Addressing limitations of traditional methodologies 

• Enables modeling of real-world scenarios 
• Faster, practical alternative to slow transistor-level simulations 
• Enables direct control and monitoring of environmental impacts 

• Key features 
• Introduces bidirectional data flow for advanced observation and control without 

compromising pin accuracy 
• Dynamic parameter adjustment from UVM testbench 
• Continuous fault detection and debugging via model-to-testbench reporting 



Structure of the AMSV Framework 

Stores configuration details and parameters 
for each analog model 

Centralized resource for system-wide 
variables 

• SystemVerilog package with OOP classes, 
LUTs, pre-defined macros, and utilities 

Provide essential functions for 
framework setup, model management, 

and dynamic parameter control. 



Code Snippet of the AMSV Utility Package 



Pre-defined Utility Macros 
• Simplify integration and reduce repetitive code 
• Ensure consistent usage across models and verification environments 
• Minimize complexity, making the framework more accessible and efficient 
• Key Macros 

• Model registration macros 
• Global parameter macros 
• Signal monitoring macros 
• Fault reporting macros 



Case Study: Application of the AMSV 
Framework 
• Design Overview 

• System-on-chip (SoC) design with digital and analog components. 
• Includes a Power Management Unit (PMU) and Phase-Locked Loop (PLL) 

• Key Objectives 
• Integrate AMSV framework with analog models and UVM testbench 
• Verify complex scenarios like environmental impacts and safety mechanisms 

• Critical analog components 
• PLL: sensitive to system temperature, leading to frequency drift;  monitored by a 

digital control unit for compensation 
• Thermal shutdown (TSD): monitors system temperature; designed to shut down 

upon reaching unsafe limits 
 



Case Study: AMSV Integration and Verification 
Scenarios 
• Verification scenarios 

• Verify temperature effects on PLL 
frequency drift 

• Assess system response when the 
TSD block fails to trigger 

• AMSV framework integration 
• Configure parameters and inject 

faults via UVM testbench 
• Real-time control and monitoring 

through the AMSV framework 

 



Modeling Analog Blocks & AMSV Integration 
• Used SystemVerilog discrete 

electrical (user-defined 
nettype) approach 

• Generated validated models 
and self-checking MVS 
testbenches with the Model-
in-Minutes (MiM) tool 

• Automatically generates models 
from a specification 

• Allows user-defined custom 
code integration 

• Enabled seamless AMSV 
framework integration across 
multiple models 



`timescale 1s/1ps 
// Importing AMSV Utility Framework Package 
import amsv_utils_pkg::*; 
// Include the AMSV Utility Macros 
`include "amsv_utils_macros.sv" 
// MODULE HEADER  {{{1 
module VCO ( 
    output out,                         // VCO Output 
    input in,                           // Input control voltage of the VCO 
    input[7:0] vcoCF,                   // Settings for VCO center frequency 
    input enable,                       // Enable Pin 
    input bias,                         // Bias Input 
    input vdda,                         // Supply 
    input gnda                          // Ground 
); 
// Registering model to AMSV Utilities 
`amsv_utils_register_model("VCO", "vco") 
// Discrete-Electrical (DE) Transceivers  {{{2 
real in$Vobs, in$Iobs, in$Idrv, in$Gdrv; 
DE_norton Xtcvr_in (in, in$Vobs, in$Iobs, in$Idrv, in$Gdrv); 
........................... 
// Local variable to sync with AMSV Global Temperature Parameter [C]  
real temp = 27;                          
........................... 
// Sync temp variable with Global Parameter 'temperature'  
`amsv_utils_sync_globals(temp, "temperature") 
........................... 
// Discrete Variables  {{{2 
assign Kvco = 25e6; 
assign delta_T = (temp + 273) - TEMP_NOMINAL; 
assign temp_freq_drift = TEMP_COEFF*delta_T; 
........................... 
always @(posedge osc) Ctrl <= min(max(in$Vobs - 1.25+0, -500e-3+0), 500e-3+0); 
assign F0 = 2.374e9 + 500e3*vcoCF_val; 
assign f = F0 + (Kvco*Ctrl) - temp_freq_drift; 
always wait (On) osc = #(`fromSeconds(max(500e-3/f, `TIME_PREC))) ~osc; 
assign out = osc; 
........................... 
// ASSERTIONS  {{{1 
// Check for V(vdda) out of range (1.7V to 1.9V)  {{{2 
assign #(`fromSeconds(25e-9), 0) _faults.V_vdda = !(( 
  (1.7 <= vdda$Vobs) && (vdda$Vobs <= 1.9)) 
  || !_locals.enableAsserts); 
always @(_faults.V_vdda)_reportFault(_faults.V_vdda, "V(vdda) out of range"); 
........................... 
endmodule 

Integrating the AMSV Framework into Models 
• `amsv_utils_register_model macro 

registers the model in Model LUT 
• `amsv_utils_sync_global macro 

synchronizes model variable temp 
with Global LUT parameter 
temperature 

• Models frequency drift due to global 
temperature changes 

• AMSV framework reports block-level 
assertions directly to the system-level 
testbench 

Importing the AMSV 
package and macros 

Registering the model to 
the Model LUT 

Synchronizing local 
variable temp with 
global temperature 

Modeling 
temperature-induced 

frequency drift 

Block-level self 
reporting assertions 



• Testbench-controlled fault injection 
mechanism in the Thermal Shutdown 
(TSD) model 

• Synchronized with global tsd_force_fail 
parameter via amsv_utils_sync_globals 
macro 

• Bypasses shut down even as the 
temperature rises 

• Allows system behavior analysis under 
failure conditions 

Implementing Safety-Critical Scenarios 



Integration into the UVM Testbench 
• Import amsv_utils_pkg at the testbench top-level 
• Create a singleton instance using the create_amsv_utils method 
• Global testbench access through UVM configuration database 

 



Accessing AMSV Utilities in UVM 
• Retrieve the AMSV instance from the UVM configuration database 
• Initialize global parameters using AMSV utility methods 
 



• Objective: AMSV utility global parameter 
variation and system behavior verification 

• Test Scenarios & Expected Outcomes 
1.Nominal condition (27°C): PLL achieves stable 

lock 
2.Gradual increase (60°C): PLL maintains lock as 

the feedback loop compensates 
3.Rapid increase (65°C): PLL controller adjusts 

VCO frequency; lock achieved within 250µs 
4.Exceeding operational range (85°C): TSD block 

triggers shutdown, verifying protection 
5.Recovery check (65°C): PLL resumes 

operation, confirming proper TSD recovery 
6.TSD failure simulation (90°C, tsd_force_fail = 

1): Verifies system response without TSD 
protection 

Test Cases 



Simulation Results 
1 2 3 4 5 6 

27°C: PLL establishes 
a stable lock 

60°C: PLL maintains lock 
(loop compensation) 

65°C: system adjusts 
vcoCF to regain lock 

85°C: TSD activates, 
shutting down PLL 

65°C: TSD resets, PLL reactivated, 
confirms safe system recovery 

(90°C, tsd_force_fail=1): TSD inactive, 
system adjusted vcoCF maxed ('d255), 

but PLL remains unstable 



• Introduced as an innovative approach to mixed-signal verification 
• Seamlessly integrates analog models with UVM testbenches, enabling 

efficient system-level verification 
• Simulates real-world conditions such as temperature variations, 

environmental changes, and fault conditions 
• Overcomes traditional verification limitations by providing speed, flexibility, 

and real-time parameter control beyond transistor-level simulations 
• Enhances connectivity verification, system-level assertions, and coverage of 

analog-digital interactions 
• Establishes a new standard in efficiency and accuracy, ensuring robust 

validation of complex mixed-signal designs 
 

AMSV Framework – Key Contributions 



Future Directions 
• Expanding capabilities 

• Future updates will include expanded model libraries for broader AMS applications 
• Support for automatic mixed-signal connectivity check 

• The Road Ahead 
• A transformative shift in mixed-signal verification, driving efficiency and innovation 
• Encouraging industry-wide adoption to refine and advance verification 

methodologies 



Questions 

• Any questions 
 


	�Addressing Advanced Mixed-Signal Verification Scenarios by Developing a UVM Framework for Analog Models
	Agenda
	Increased Complexity in IC Verification
	Evolving Verification Needs for the Digital Twin
	Limitations of Traditional Methodologies
	Overcoming the Limitations
	The AMSV Utility Framework
	Structure of the AMSV Framework
	Code Snippet of the AMSV Utility Package
	Pre-defined Utility Macros
	Case Study: Application of the AMSV Framework
	Case Study: AMSV Integration and Verification Scenarios
	Modeling Analog Blocks & AMSV Integration
	Integrating the AMSV Framework into Models
	Slide Number 15
	Integration into the UVM Testbench
	Accessing AMSV Utilities in UVM
	Slide Number 18
	Simulation Results
	AMSV Framework – Key Contributions
	Future Directions
	Questions

