
Addressing Advanced Mixed-Signal
Verification Scenarios by Developing a UVM

Framework for Analog Models

Simul Barua
Ulkasemi Inc.

20045 Stevens Creek Blvd,
Suite 2B

Cupertino, CA 95014
simul@ulkasemi.com

Shahriar Kabir
Ulkasemi Inc.

20045 Stevens Creek Blvd,
Suite 2B

Cupertino, CA 95014
shahriar@ulkasemi.com

Henry Chang
Designer’s Guide Consulting,

Inc.
3043 Meridian Ave #35

San Jose, CA 95124
henry@designers-guide.com

Abstract- With the rise of AI, IoT, and automotive safety applications, the demand for reliable mixed-signal verification

in Integrated Circuit (IC) design has become critical. Increasing design complexity, particularly at the interface of analog
and digital components, often leads to verification gaps and costly respins. This paper introduces the Analog Mixed-Signal
Verification (AMSV) utility framework, which enhances system-level testbenches by integrating analog behavioral models
within a Universal Verification Methodology (UVM) environment. Leveraging SystemVerilog’s object-oriented
programming (OOP) capabilities, the AMSV framework enables precise monitoring and control of analog models, allowing
for accurate simulation of real-world conditions, including temperature effects, parametric variations, and subsystem
failures. Through detailed case studies, we demonstrate the framework’s capacity to address verification needs in advanced
applications, significantly improving accuracy and efficiency. Simulation results validate the framework’s potential to
enhance IC reliability, making it particularly relevant to emerging, high-stake domains.

I. INTRODUCTION
The complexity of Integrated Circuit (IC) verification has significantly increased, often outpacing the complexity

of the design itself. This trend is particularly evident in modern applications such as Artificial Intelligence (AI), the
Internet of Things (IoT), and automotive safety, all of which demand heightened reliability and seamless functionality
across both analog and digital domains. Consequently, verification success rates have declined, leading to a rise in
costly IC respins [1]. Two significant factors driving these respins are issues in the analog design and bugs in the
mixed-signal interfaces, which are crucial components in modern designs. Our previous research [2] addressed these
challenges by incorporating basic analog functional models into chip-level verification environments, demonstrating
how these models can enhance system-level verification to catch bugs that would otherwise evade detection in
traditional digital-focused testbenches.

Despite these advancements, conventional verification methodologies still lack the robustness needed to address
more complex system requirements. As IC design complexity evolves, we must account for system performance,
safety, and other more complex scenarios that a digital twin, which needs to include analog elements, must address.
This could involve simulating the effects of temperature or parametric variations of block non-idealities onto the
overall system for performance. For safety, this might mean modeling how analog blocks, subsystems, and systems
fail in particular ways.

This is where analog models demonstrate their true value. Besides simulating at feasible speeds compared to
transistor-level simulations, models can incorporate complex effects like environmental stress factors and parametric
shifts in a straightforward manner. The potential of these analog models is vast, offering greater flexibility, enabling
the modeling and simulation of complex real-world scenarios, and allowing broader system assessments, such as
evaluating how AI algorithms perform when critical analog components degrade or fail.

However, to fully harness these enhanced analog models, the traditional system-level testbench widely developed
in SystemVerilog and/or Universal Verification Methodology (UVM) must also evolve. They require improved
capabilities for monitoring, controlling, and interacting with analog models, enabling verification under advanced,
real-world conditions.

This paper introduces the Analog Mixed-Signal Verification (AMSV) utility framework, which leverages
SystemVerilog object-oriented programming (OOP) constructs to enhance analog models and the system-level
testbench. The AMSV utility framework goes beyond simply addressing respin issues; it enables precise modeling
and simulation of real-world conditions such as temperature effects, parametric variations, failure conditions, analog
impairments, and other intricate scenarios. Thus, it allows for a more comprehensive evaluation of system performance
and safety.

mailto:simul@ulkasemi.com
mailto:farshad@ulkasemi.com
mailto:henry@designers-guide.com

II. MOTIVATION AND PURPOSE OF THE AMSV UTILITY FRAMEWORK
Traditionally, simulating environmental effects required slow, transistor-level simulations, which provided

accuracy but were impractical for system-level verification and offered no direct control over environmental impacts
from testbenches. This limitation made it challenging to verify critical features, such as the system responses to
temperature-induced frequency drift of a Phase Locked Loop (PLL) or the robustness of safety mechanisms like
thermal shutdowns. Moreover, verifying safety conditions at the transistor level is notoriously challenging and
designing system-level tests to intentionally induce predictable failures is only possible if the design inherently
accommodates fault conditions. These limitations highlight the need for a more flexible and efficient verification
approach that could seamlessly handle complex, mixed-signal scenarios.

The AMSV utility framework we will present addresses these challenges by enabling analog models to incorporate
real-world behaviors. Additionally, the framework empowers the UVM testbench to dynamically set and adjust
parameters, offering real-time control and monitoring of environmental conditions and fault scenarios, effectively
verifying these features and ensuring that system responses to changes, such as frequency adjustments or safety
reactions, are accurate and reliable.

The AMSV framework also facilitates continuous fault detection by enabling block-level analog models to report
faults directly to the UVM testbench. This capability enhances fault detection and debugging, allowing verification
teams to comprehensively test critical behaviors, from environmental resilience to safety mechanisms, and
significantly advance full-chip verification for today’s complex systems.

Essentially, what is required in addition to the input/output ports of the blocks in the system is a set of potentially
bidirectional ports into the model of the block (not the schematic) that can control the model or from which to make
observations for verification purposes. These additional ports cannot be added to the port list of the model as that
would invalidate the pin accuracy of the model, which is required for model vs. schematic (MVS) checking [3] and
for netlisting. Therefore, a separate mechanism must be introduced for these ports. This is where the AMSV
framework plays a role.

In the following sections, we will explore the details of the framework and demonstrate how it enhances both analog
models and the system-level testbench, ultimately improving the system-level verification of today's complex mixed-
signal designs.

III. STRUCTURE OF THE AMSV UTILITY FRAMEWORK
The AMSV utility framework is structured as a SystemVerilog package that includes OOP classes, lookup tables

(LUTs), pre-defined macros, and other specialized utilities. This modular design integrates seamlessly with analog
models and the UVM testbench, allowing for dynamic parameter control, real-time fault injection, and efficient
communication between the analog models and the verification environment. Fig. 1 illustrates the framework's
architecture, highlighting the core components: the model and global parameter LUTs, along with the utility methods
to help with the communication and management of the components.

Figure 1. Visual illustration of the structure of the AMSV utility framework.

A. Model LUT
The model LUT contains a comprehensive set of configuration settings and parameters specific to each analog

model. This table includes essential information, such as a list of models, port details (including direction, type, and
additional settings), and configuration parameters. Moreover, the model LUT facilitates access to the framework’s
global variables across models, streamlining parameter management and ensuring consistency in system-wide settings.

This structure enables analog models to report input range faults directly to the UVM testbench, allowing for the
rapid detection of deviations from expected operating conditions. With capabilities to monitor block-level pin values
and track critical metrics, the model LUT is instrumental in real-time model adjustments and fault reporting, making
it essential for verifying complex mixed-signal behaviors.

B. Global Parameters LUT

The global parameter LUT serves as a centralized resource for storing parameters that affect multiple models or the
entire verification environment. It acts as a unified source for environmental variables and system-wide settings.
Typical entries include temperature, reference voltages, block failure mechanisms, and other key parameters.

The global parameter LUT allows seamless access and real-time updates from the testbench, enabling the UVM
environment to dynamically influence model behavior as needed. Accessible to both the testbench and analog models,
it ensures consistent parameter application across the verification environment. This structure guarantees that critical
conditions are uniformly maintained, facilitating the reliable verification of complex mixed-signal interactions.

C. Utility Methods

The AMSV framework includes a suite of utility methods that establish the primary communication channels
between the UVM testbench and the analog models. These methods provide essential tools for model management,
global parameter control, and signal monitoring, making the framework highly adaptable to various verification
scenarios.

• Base Utilities: These methods manage and integrate the AMSV framework itself. They facilitate the creation
of singleton class objects within the framework, ensuring a seamless setup and preventing integration errors,
which helps maintain consistency and reliability in the use of AMSV utilities.

• Model Utilities: Designed for model management, these utilities register each analog model within the
framework, storing relevant information in the model LUT. This process allows the UVM testbench to
monitor and handle various scenarios by accessing the model data as needed.

• Global Parameter Utilities: These functions enable the testbench to dynamically set global parameters and
retrieve real-time values from the models. By providing centralized control over parameters, they allow for
real-time adjustments to model behavior, which is essential for simulating complex scenarios.

D. Code Snippet

Fig. 2 provides an overview of the structure of the AMSV utility framework, illustrating how the main class
organizes core components, including lookup tables and utility functions.

The AMSV package is designed to encapsulate the model and global parameter LUTs while providing utility
functions that streamline communication between models and the testbench.

Figure 2: AMSV utility framework package.

E. Pre-defined Utility Macros

The AMSV framework also includes a set of pre-defined utility macros designed to simplify integration and manage
various operations. These macros minimize the need to type repetitive code, ensure consistent usage across analog
models and verification environments, and reduce code complexity, making the framework more accessible and
efficient.

Key macros provided by the AMSV framework include:
• Model registration macros: These macros streamline the setup of each analog model by initializing model-

specific configurations within the model LUT. This includes pin mappings and parametric settings, ensuring
that each model is correctly registered and accessible to the UVM testbench, thereby reducing the setup time
for individual models.

• Global parameter synchronization macros: These macros enable continuous observation of global parameters
set by the testbench, allowing models to react to parameter changes and adjust their behavior accordingly.

• Signal monitoring macros: These macros facilitate the monitoring of critical signals within analog models,
enabling the UVM testbench to detect and report deviations from expected behavior, which streamlines fault
detection and debugging.

• Fault reporting macros: These macros simplify block-level fault detection by enabling direct fault reporting
from the models to the testbench, allowing the UVM environment to manage fault conditions efficiently.

Fig. 3 shows examples of definitions of some key macros in the AMSV framework. While only the definitions are
shown, they illustrate how these macros support streamlined operations within the framework.

Figure 3: Key macro definitions for simplified integration of the AMSV utility framework.

These macro definitions illustrate how the AMSV framework simplifies tasks such as model registration, global

parameter synchronization, signal monitoring, and fault reporting. By utilizing these macros, both modeling and
verification teams can quickly configure the AMSV framework and focus on verifying complex behaviors that
traditional setups, reliant on hierarchical references or fixed testbench names, often struggle to address. This saves
time and enables a more efficient and reliable verification process.

In the next section, we will examine case studies that showcase the AMSV framework in real-world verification
scenarios, illustrating how its components enhance the accuracy and efficiency of system-level mixed-signal
verification.

IV. CASE STUDY: APPLICATION OF AMSV UTILITY FRAMEWORK TO MIXED-SIGNAL SYSTEM DESIGN

In this section, we demonstrate the application of the AMSV framework using an example System-on-Chip (SoC)
design comprising both digital and analog components. Our primary objective is to showcase how to integrate the
framework with analog models and the system-level UVM testbench and how this integration enables the verification
of complex scenarios.
A. Overview of the Design and Verification Environment

The example design includes critical mixed-signal blocks, specifically a power management unit and a phase-locked
loop (PLL). The AMSV framework is employed to model the impact of environmental factors, particularly
temperature, on these analog components, allowing for a more thorough verification of system-level responses under
varying conditions.

The PLL block in this design is sensitive to temperature fluctuations, which causes its operating frequency to drift
from the intended value. This frequency deviation is monitored by a control unit within the digital subsystem, which
dynamically adjusts the PLL to maintain its desired frequency. Additionally, the design incorporates a temperature
monitoring and thermal shutdown (TSD) block that is responsible for overseeing the system temperature. If the
temperature exceeds the operational threshold, the TSD block is designed to shut down the system to prevent
overheating and catastrophic failure.

Using the AMSV framework, we model the temperature effect on the PLL to verify whether the control unit
appropriately compensates for frequency drifts caused by rising temperatures. Furthermore, to assess the system's
response to safety mechanisms, we include a failure mechanism in the thermal shutdown block using the framework.
This simulated fault prevents the TSD block from triggering, even when temperatures rise above safe limits. This
allows us to analyze how the system reacts under potential safety-compromising conditions.

The AMSV framework facilitates the verification of these complex scenarios by integrating them into the UVM
testbench. We will describe how to configure parameters such as temperature and trigger the TSD failure mechanism
directly from the UVM testbench. We will then present specific test cases developed to validate these safety and
performance features. Fig. 4 provides a block diagram of the verification setup, illustrating the design under test (which
includes digital blocks and analog models) and highlighting the role of the AMSV utility framework as an interface
between the models and the testbench. The following sections will provide detailed discussions of how the AMSV
framework is incorporated into both the analog models and the UVM testbench, as well as the specific test cases
developed to validate these complex scenarios.

Figure 4: Block diagram of verification setup for the example SoC design with AMSV framework integration.

B. Modeling Analog Blocks and Integrating the AMSV Framework

We developed fully functional models for the analog subsystem using the SystemVerilog discrete electrical (also
known as the user-defined nettype) approach. These models were generated with the Model-in-Minutes (MiM) tool
[4], which produces distinct analog mixed-signal (AMS) and discrete mixed signal (DMS) models in Verilog-AMS
and SystemVerilog respectively, and self-checking model-versus-schematic (MVS) testbenches for analog blocks
from a specification. MiM allows for incorporating custom user code into model containers (shared settings that all
models inherit within a project). This feature was particularly beneficial for integrating the AMSV utility framework
into multiple models without modifying each specification independently.

Fig. 5 illustrates the MiM specification used to construct the Voltage Controlled Oscillator (VCO) of the PLL,
specifically modeling how the system temperature impacts its behavior. By utilizing the user code section of MiM,
we integrated the AMSV framework by embedding the necessary macros directly into the generated models.

Figure 5: MiM specification of the voltage-controlled oscillator (VCO) of the PLL with AMSV utility framework integration.

Fig. 6 shows the model created from the MiM specification, emphasizing the inclusion of AMSV utility macros.
The `amsv_utils_register_model macro registers the model within the framework's Model LUT by providing the
design name and a unique identifier. To synchronize the model with the global temperature parameter stored in the
Global LUT, we utilized the `amsv_utils_sync_global macro, assigning the internal variable temp to store the global
temperature value.

The code also demonstrates block-level assertions generated by MiM based on the range column in the ports table
shown in Fig. 5. These assertions detect and report block-level faults when input values deviate from normal operating
conditions. Leveraging the AMSV utility framework, these crucial block-level assertions can be reported directly to
the system-level testbench, facilitating debugging and early bug detection in the design.

To test safety-critical scenarios, we integrated a failure mechanism into the thermal shutdown (TSD) model using
the AMSV utility framework. This framework synchronizes with a global parameter called tsd_force_fail, utilizing
the `amsv_utils_sync_globals macro. By connecting the global parameter tsd_force_fail with the TSD model, we can
override the default behavior of the TSD directly from the testbench. When tsd_force_fail is enabled, the TSD
bypasses its normal shutdown response, even as the temperature rises. Fig. 7 illustrates the code implementing this
failure mechanism within the TSD model.

Figure 6: AMSV utility framework-enhanced VCO model with global temperature parameter effect.

Figure 7: Code snippet of TSD model synchronization with global parameter tsd_force_fail to simulate failure mechanism.

C. Integrating the AMSV Framework to UVM System Level Testbench
To enable the AMSV utilities within the UVM testbench, we start by importing the amsv_utils_pkg into the

testbench top level and creating a singleton instance of the AMSV utility class using the create_amsv_utils method
provided in the package. This singleton instance can then be accessed throughout the UVM testbench by setting it via
the UVM configuration database. With this setup, the UVM testbench can fully leverage AMSV utility methods,
enabling the generation of real-world scenarios that were previously challenging to recreate with traditional
approaches. Fig. 8 illustrates the code used to integrate the framework into the top level of the UVM testbench and
configure it via the UVM configuration database.

Figure 8: AMSV utility framework in UVM testbench top-level with configuration database integration.

Once the AMSV utility object is accessible in the test case (through the configuration database inside the
build_phase), it can be used to initialize parameters that impact the model’s behavior. In the code shown in Fig. 9, we
initialize the global parameter called temperature and define a variable called tsd_force_fail to simulate failure in the
TSD block under critical conditions, allowing us to verify system responses to extreme scenarios.

Figure 9: Initialization of AMSV utility global parameters in UVM test case

The following section explores several key verification scenarios made possible with the AMSV Utility framework,

utilizing the initialized parameters shown in Fig. 9.

D. Test Cases for AMSV Utility Global Parameter Variation and System Behavior Verification
We subjected the PLL to several test cases to thoroughly evaluate it under various conditions set by the AMSV

utility framework.
1) The global temperature is initialized to a nominal value of 27°C, where we expect the PLL to achieve a stable

lock.
2) The temperature is gradually increased to 60°C, and we anticipate the PLL maintaining its lock, as the feedback

loop can compensate for this slow temperature change.
3) Next, the temperature is rapidly increased to 65°C. We expect the PLL controller from the digital side to adjust

the central frequency of the VCO and achieve the PLL lock within a 250µs limit, verifying the system’s ability to
handle sudden thermal changes.

4) The temperature is set beyond the operational range, reaching 85°C, where the TSD block is expected to trigger
and shut down the PLL for safety. This test verifies the TSD's protective functionality.

5) The temperature is then lowered to 65°C, within the safe range. We expect the PLL block to resume operation
with the TSD block becoming inactive, ensuring proper recovery from shutdown.

6) Using the AMSV Utility, we simulate a failure in the TSD block by setting the parameter tsd_force_fail to 1,
disabling the TSD's shutdown function. In this scenario, we set the temperature to 90°C to observe whether the system
can recover the PLL and whether it has any internal safety features to ensure reliable functionality under such critical
conditions.

Fig. 10 illustrates the implementation of these test cases within the run_phase of the UVM test case code,
highlighting how the global parameters of the framework are adjusted for each scenario to assess the system’s response
to varying conditions.

Figure 10: UVM test case for system behavior verification with AMSV utility global parameter changes

V. RESULTS & DISCUSSION

Based on the test case scenarios described above, we can observe the system's response to temperature changes and
safety conditions enabled by the AMSV Utility framework. Fig. 11 presents the simulation waveform, annotated to
illustrate results corresponding to test cases 1 to 6. Each annotation marks a distinct scenario, highlighting key
observations such as PLL lock status, temperature changes, TSD activation, and system recovery, providing a visual
representation of the system's response under each test condition.

The following results provide insights into how the design behaves under each test case scenario:
1) The temperature parameter is initially set to a nominal value of 27°C, and the power-up sequence is initiated,

resetting the design using the porb signal. After the reset sequence completes, the PLL establishes a lock, indicated
by the lock bit being set to high on the waveform. This initial setup confirms the system can achieve stability under
normal temperature conditions.

2) When the temperature is gradually raised to 60°C, the PLL maintains its lock as expected, demonstrating that the
loop compensates effectively for a slow-moving temperature increase. This gradual adjustment simulates typical
operating conditions where the system must adapt to minor thermal fluctuations without losing stability.

3) With an abrupt temperature rise to 65°C, the PLL lock disengages, and the system attempts to adjust the VCO
center frequency, denoted as vcoCF on the waveform, to reestablish the lock. We observe that the PLL lock is
successfully re-engaged once the vcoCF register sets an appropriate center frequency. This scenario verifies the
system's ability to react to sudden thermal shifts, adjusting internal parameters accordingly to maintain functionality.

4) When the temperature is set to 85°C, beyond the operating range of 27°C to 80°C, the thermal shutdown (TSD)
mechanism activates. At this point, the tsd signal is set to high, disabling the pll_clk and sys_clk signals to protect the
system. This test validates the TSD mechanism's ability to prevent operation in unsafe thermal conditions.

Figure 11: Simulation Results Waveform Illustrating System Responses to Temperature Variations and TSD Scenarios

5) The temperature is then lowered to 65°C, within the operational range. As expected, the tsd signal resets to low,

and both pll_clk and sys_clk signals are reactivated, allowing the PLL to resume operation. This behavior confirms
that the system can recover correctly and safely from a thermal shutdown once conditions are stable.

6) To test system resilience under a TSD failure, the tsd_force_fail parameter is set, and the temperature is raised
to 90°C. The tsd signal does not activate in this scenario despite exceeding safe limits. The system attempts to
compensate by setting the vcoCF register to its maximum value ('d255) to regain the PLL lock; however, it is
unsuccessful, resulting in the PLL frequency fluctuation as it continuously tries to match the phase. By simulating this
failure scenario, the designer gains insight into potential vulnerabilities and behavior under TSD malfunctions,
enhancing system reliability through real-world scenario testing.

Overall, these observations demonstrate the AMSV utility framework's capability to simulate diverse environmental
conditions and fault scenarios, providing invaluable insights into system behavior and robustness. The entire
simulation was completed in approximately two minutes—a significant improvement over traditional transistor-level
simulations, which cannot achieve such performance for comparable conditions. Furthermore, conventional
testbenches often lack control over dynamic scenarios like abrupt temperature changes and fault conditions, making
it challenging to validate complex interactions and safety mechanisms in real time.

IV. CONCLUSION

This paper presented the AMSV utility framework as an innovative approach to address mixed-signal verification
challenges in modern IC designs. By integrating analog models with the UVM testbench, the framework enables
efficient system-level verification previously unattainable with traditional methods.

Through the test cases, we demonstrated the framework’s capability to simulate complex real-world scenarios, such
as temperature fluctuations, abrupt environmental changes, and fault conditions, all within a short simulation time of
approximately two minutes. These capabilities highlight the AMSV utility framework’s ability to overcome the
limitations of transistor-level simulations and conventional testbenches, which lack the flexibility and speed to handle
such intricate conditions.

Beyond the scenarios presented, the AMSV utility framework offers other valuable applications. It provides a robust
solution for verifying mixed-signal connectivity, ensuring reliable interactions between analog and digital
components. With real-time monitoring and direct access to block-level signals, verification teams can develop
system-level assertions and enhance coverage of analog designs. This capacity for connectivity verification, assertion
development, and detailed coverage metrics makes the AMSV framework a versatile tool that goes beyond traditional
verification setups.

The AMSV utility framework bridges crucial gaps by facilitating direct parameter control and real-time observation,
reducing limitations that have long hindered traditional setups. Its ability to replicate complex environmental scenarios
and dynamically interact with system parameters sets a new standard in efficiency, accuracy, and completeness for

mixed-signal verification. As IC designs continue to grow in complexity, the framework provides a scalable and
adaptable solution that can keep pace with evolving verification needs, making it a valuable asset for developing
advanced applications in areas such as automotive safety, IoT, and AI-driven systems.

In conclusion, the AMSV Utility framework represents a significant advancement in the field of mixed-signal
verification, equipping engineers with the tools necessary to meet today’s verification demands and setting the stage
for future innovations. Future extensions of this framework may include expanded model libraries and enhanced utility
functions, further strengthening its role in the verification process.

REFERENCES

[1] B. Bailey, “Trouble Ahead for IC Verification,” Semiconductor Engineering, May 29, 2024. Available:
https://semiengineering.com/trouble-ahead-for-ic-verification/. [Accessed: Sep. 08, 2024].

[2] S. Barua, F. Farshad, and H. Chang, “Advanced UVM Based Chip Verification Methodologies with Full Analog Functionality,” DVCON
USA 2024. Available: https://dvcon-proceedings.org/document/advanced-uvm-based-chip-verification-methodologies-with-full-analog-
functionality/. [Accessed: Sep. 08, 2024].

[3] Kundert, Kenneth, “Model Validation (MVS)” from “Filling the Gap Between Digital and Analog Verification, Part 2”, October 24, 2024,
Available: https://designers-guide.com/main/webinars/?1=331#vid1. [Accessed: Nov. 01, 2024].

[4] Designer's Guide Consulting, Inc., "Analog Verification Products: Models in Minutes," [Online]. Available: https://designers-
guide.com/main/products/. [Accessed: Nov. 01, 2024].

https://designers-guide.com/main/webinars/?1=331#vid1

