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Abstract- With the rise of AI, IoT, and automotive safety applications, the demand for reliable mixed-signal verification 

in Integrated Circuit (IC) design has become critical. Increasing design complexity, particularly at the interface of analog 
and digital components, often leads to verification gaps and costly respins. This paper introduces the Analog Mixed-Signal 
Verification (AMSV) utility framework, which enhances system-level testbenches by integrating analog behavioral models 
within a Universal Verification Methodology (UVM) environment. Leveraging SystemVerilog’s object-oriented 
programming (OOP) capabilities, the AMSV framework enables precise monitoring and control of analog models, allowing 
for accurate simulation of real-world conditions, including temperature effects, parametric variations, and subsystem 
failures. Through detailed case studies, we demonstrate the framework’s capacity to address verification needs in advanced 
applications, significantly improving accuracy and efficiency. Simulation results validate the framework’s potential to 
enhance IC reliability, making it particularly relevant to emerging, high-stake domains. 

I.   INTRODUCTION 
The complexity of Integrated Circuit (IC) verification has significantly increased, often outpacing the complexity 

of the design itself. This trend is particularly evident in modern applications such as Artificial Intelligence (AI), the 
Internet of Things (IoT), and automotive safety, all of which demand heightened reliability and seamless functionality 
across both analog and digital domains. Consequently, verification success rates have declined, leading to a rise in 
costly IC respins [1]. Two significant factors driving these respins are issues in the analog design and bugs in the 
mixed-signal interfaces, which are crucial components in modern designs. Our previous research [2] addressed these 
challenges by incorporating basic analog functional models into chip-level verification environments, demonstrating 
how these models can enhance system-level verification to catch bugs that would otherwise evade detection in 
traditional digital-focused testbenches. 

Despite these advancements, conventional verification methodologies still lack the robustness needed to address 
more complex system requirements. As IC design complexity evolves, we must account for system performance, 
safety, and other more complex scenarios that a digital twin, which needs to include analog elements, must address. 
This could involve simulating the effects of temperature or parametric variations of block non-idealities onto the 
overall system for performance. For safety, this might mean modeling how analog blocks, subsystems, and systems 
fail in particular ways. 

This is where analog models demonstrate their true value. Besides simulating at feasible speeds compared to 
transistor-level simulations, models can incorporate complex effects like environmental stress factors and parametric 
shifts in a straightforward manner. The potential of these analog models is vast, offering greater flexibility, enabling 
the modeling and simulation of complex real-world scenarios, and allowing broader system assessments, such as 
evaluating how AI algorithms perform when critical analog components degrade or fail. 

However, to fully harness these enhanced analog models, the traditional system-level testbench widely developed 
in SystemVerilog and/or Universal Verification Methodology (UVM) must also evolve. They require improved 
capabilities for monitoring, controlling, and interacting with analog models, enabling verification under advanced, 
real-world conditions. 

This paper introduces the Analog Mixed-Signal Verification (AMSV) utility framework, which leverages 
SystemVerilog object-oriented programming (OOP) constructs to enhance analog models and the system-level 
testbench. The AMSV utility framework goes beyond simply addressing respin issues; it enables precise modeling 
and simulation of real-world conditions such as temperature effects, parametric variations, failure conditions, analog 
impairments, and other intricate scenarios. Thus, it allows for a more comprehensive evaluation of system performance 
and safety. 
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II.  MOTIVATION AND PURPOSE OF THE AMSV UTILITY FRAMEWORK 
Traditionally, simulating environmental effects required slow, transistor-level simulations, which provided 

accuracy but were impractical for system-level verification and offered no direct control over environmental impacts 
from testbenches. This limitation made it challenging to verify critical features, such as the system responses to 
temperature-induced frequency drift of a Phase Locked Loop (PLL) or the robustness of safety mechanisms like 
thermal shutdowns. Moreover, verifying safety conditions at the transistor level is notoriously challenging and 
designing system-level tests to intentionally induce predictable failures is only possible if the design inherently 
accommodates fault conditions. These limitations highlight the need for a more flexible and efficient verification 
approach that could seamlessly handle complex, mixed-signal scenarios. 

The AMSV utility framework we will present addresses these challenges by enabling analog models to incorporate 
real-world behaviors. Additionally, the framework empowers the UVM testbench to dynamically set and adjust 
parameters, offering real-time control and monitoring of environmental conditions and fault scenarios, effectively 
verifying these features and ensuring that system responses to changes, such as frequency adjustments or safety 
reactions, are accurate and reliable. 

The AMSV framework also facilitates continuous fault detection by enabling block-level analog models to report 
faults directly to the UVM testbench. This capability enhances fault detection and debugging, allowing verification 
teams to comprehensively test critical behaviors, from environmental resilience to safety mechanisms, and 
significantly advance full-chip verification for today’s complex systems. 

Essentially, what is required in addition to the input/output ports of the blocks in the system is a set of potentially 
bidirectional ports into the model of the block (not the schematic) that can control the model or from which to make 
observations for verification purposes. These additional ports cannot be added to the port list of the model as that 
would invalidate the pin accuracy of the model, which is required for model vs. schematic (MVS) checking [3] and 
for netlisting. Therefore, a separate mechanism must be introduced for these ports. This is where the AMSV 
framework plays a role. 

In the following sections, we will explore the details of the framework and demonstrate how it enhances both analog 
models and the system-level testbench, ultimately improving the system-level verification of today's complex mixed-
signal designs. 

III.  STRUCTURE OF THE AMSV UTILITY FRAMEWORK 
The AMSV utility framework is structured as a SystemVerilog package that includes OOP classes, lookup tables 

(LUTs), pre-defined macros, and other specialized utilities. This modular design integrates seamlessly with analog 
models and the UVM testbench, allowing for dynamic parameter control, real-time fault injection, and efficient 
communication between the analog models and the verification environment. Fig. 1 illustrates the framework's 
architecture, highlighting the core components: the model and global parameter LUTs, along with the utility methods 
to help with the communication and management of the components. 
 
 

 
 

Figure 1. Visual illustration of the structure of the AMSV utility framework. 



A. Model LUT 
The model LUT contains a comprehensive set of configuration settings and parameters specific to each analog 

model. This table includes essential information, such as a list of models, port details (including direction, type, and 
additional settings), and configuration parameters. Moreover, the model LUT facilitates access to the framework’s 
global variables across models, streamlining parameter management and ensuring consistency in system-wide settings. 

This structure enables analog models to report input range faults directly to the UVM testbench, allowing for the 
rapid detection of deviations from expected operating conditions. With capabilities to monitor block-level pin values 
and track critical metrics, the model LUT is instrumental in real-time model adjustments and fault reporting, making 
it essential for verifying complex mixed-signal behaviors. 

 
B. Global Parameters LUT 

The global parameter LUT serves as a centralized resource for storing parameters that affect multiple models or the 
entire verification environment. It acts as a unified source for environmental variables and system-wide settings. 
Typical entries include temperature, reference voltages, block failure mechanisms, and other key parameters. 

The global parameter LUT allows seamless access and real-time updates from the testbench, enabling the UVM 
environment to dynamically influence model behavior as needed. Accessible to both the testbench and analog models, 
it ensures consistent parameter application across the verification environment. This structure guarantees that critical 
conditions are uniformly maintained, facilitating the reliable verification of complex mixed-signal interactions. 

 
C. Utility Methods 

The AMSV framework includes a suite of utility methods that establish the primary communication channels 
between the UVM testbench and the analog models. These methods provide essential tools for model management, 
global parameter control, and signal monitoring, making the framework highly adaptable to various verification 
scenarios. 

• Base Utilities: These methods manage and integrate the AMSV framework itself. They facilitate the creation 
of singleton class objects within the framework, ensuring a seamless setup and preventing integration errors, 
which helps maintain consistency and reliability in the use of AMSV utilities. 

• Model Utilities: Designed for model management, these utilities register each analog model within the 
framework, storing relevant information in the model LUT. This process allows the UVM testbench to 
monitor and handle various scenarios by accessing the model data as needed. 

• Global Parameter Utilities: These functions enable the testbench to dynamically set global parameters and 
retrieve real-time values from the models. By providing centralized control over parameters, they allow for 
real-time adjustments to model behavior, which is essential for simulating complex scenarios. 

 
D. Code Snippet 

Fig. 2 provides an overview of the structure of the AMSV utility framework, illustrating how the main class 
organizes core components, including lookup tables and utility functions. 

The AMSV package is designed to encapsulate the model and global parameter LUTs while providing utility 
functions that streamline communication between models and the testbench. 



 
Figure 2: AMSV utility framework package. 

 
E. Pre-defined Utility Macros 

The AMSV framework also includes a set of pre-defined utility macros designed to simplify integration and manage 
various operations. These macros minimize the need to type repetitive code, ensure consistent usage across analog 
models and verification environments, and reduce code complexity, making the framework more accessible and 
efficient. 

Key macros provided by the AMSV framework include: 
• Model registration macros: These macros streamline the setup of each analog model by initializing model-

specific configurations within the model LUT. This includes pin mappings and parametric settings, ensuring 
that each model is correctly registered and accessible to the UVM testbench, thereby reducing the setup time 
for individual models. 

• Global parameter synchronization macros: These macros enable continuous observation of global parameters 
set by the testbench, allowing models to react to parameter changes and adjust their behavior accordingly. 

• Signal monitoring macros: These macros facilitate the monitoring of critical signals within analog models, 
enabling the UVM testbench to detect and report deviations from expected behavior, which streamlines fault 
detection and debugging. 

• Fault reporting macros: These macros simplify block-level fault detection by enabling direct fault reporting 
from the models to the testbench, allowing the UVM environment to manage fault conditions efficiently. 

Fig. 3 shows examples of definitions of some key macros in the AMSV framework. While only the definitions are 
shown, they illustrate how these macros support streamlined operations within the framework. 



 

 
Figure 3: Key macro definitions for simplified integration of the AMSV utility framework. 

 
These macro definitions illustrate how the AMSV framework simplifies tasks such as model registration, global 

parameter synchronization, signal monitoring, and fault reporting. By utilizing these macros, both modeling and 
verification teams can quickly configure the AMSV framework and focus on verifying complex behaviors that 
traditional setups, reliant on hierarchical references or fixed testbench names, often struggle to address. This saves 
time and enables a more efficient and reliable verification process. 

In the next section, we will examine case studies that showcase the AMSV framework in real-world verification 
scenarios, illustrating how its components enhance the accuracy and efficiency of system-level mixed-signal 
verification. 

 
IV.   CASE STUDY: APPLICATION OF AMSV UTILITY FRAMEWORK TO MIXED-SIGNAL SYSTEM DESIGN 

In this section, we demonstrate the application of the AMSV framework using an example System-on-Chip (SoC) 
design comprising both digital and analog components. Our primary objective is to showcase how to integrate the 
framework with analog models and the system-level UVM testbench and how this integration enables the verification 
of complex scenarios. 
A. Overview of the Design and Verification Environment 

The example design includes critical mixed-signal blocks, specifically a power management unit and a phase-locked 
loop (PLL). The AMSV framework is employed to model the impact of environmental factors, particularly 
temperature, on these analog components, allowing for a more thorough verification of system-level responses under 
varying conditions. 

The PLL block in this design is sensitive to temperature fluctuations, which causes its operating frequency to drift 
from the intended value. This frequency deviation is monitored by a control unit within the digital subsystem, which 
dynamically adjusts the PLL to maintain its desired frequency. Additionally, the design incorporates a temperature 
monitoring and thermal shutdown (TSD) block that is responsible for overseeing the system temperature. If the 
temperature exceeds the operational threshold, the TSD block is designed to shut down the system to prevent 
overheating and catastrophic failure. 

Using the AMSV framework, we model the temperature effect on the PLL to verify whether the control unit 
appropriately compensates for frequency drifts caused by rising temperatures. Furthermore, to assess the system's 
response to safety mechanisms, we include a failure mechanism in the thermal shutdown block using the framework. 
This simulated fault prevents the TSD block from triggering, even when temperatures rise above safe limits. This 
allows us to analyze how the system reacts under potential safety-compromising conditions. 

The AMSV framework facilitates the verification of these complex scenarios by integrating them into the UVM 
testbench. We will describe how to configure parameters such as temperature and trigger the TSD failure mechanism 
directly from the UVM testbench. We will then present specific test cases developed to validate these safety and 
performance features. Fig. 4 provides a block diagram of the verification setup, illustrating the design under test (which 
includes digital blocks and analog models) and highlighting the role of the AMSV utility framework as an interface 
between the models and the testbench. The following sections will provide detailed discussions of how the AMSV 
framework is incorporated into both the analog models and the UVM testbench, as well as the specific test cases 
developed to validate these complex scenarios. 

 



 
Figure 4: Block diagram of verification setup for the example SoC design with AMSV framework integration. 

 
B. Modeling Analog Blocks and Integrating the AMSV Framework 

We developed fully functional models for the analog subsystem using the SystemVerilog discrete electrical (also 
known as the user-defined nettype) approach. These models were generated with the Model-in-Minutes (MiM) tool 
[4], which produces distinct analog mixed-signal (AMS) and discrete mixed signal (DMS) models in Verilog-AMS 
and SystemVerilog respectively, and self-checking model-versus-schematic (MVS) testbenches for analog blocks 
from a specification. MiM allows for incorporating custom user code into model containers (shared settings that all 
models inherit within a project). This feature was particularly beneficial for integrating the AMSV utility framework 
into multiple models without modifying each specification independently. 

Fig. 5 illustrates the MiM specification used to construct the Voltage Controlled Oscillator (VCO) of the PLL, 
specifically modeling how the system temperature impacts its behavior. By utilizing the user code section of MiM, 
we integrated the AMSV framework by embedding the necessary macros directly into the generated models. 

 

 
 

Figure 5: MiM specification of the voltage-controlled oscillator (VCO) of the PLL with AMSV utility framework integration. 



Fig. 6 shows the model created from the MiM specification, emphasizing the inclusion of AMSV utility macros. 
The `amsv_utils_register_model macro registers the model within the framework's Model LUT by providing the 
design name and a unique identifier. To synchronize the model with the global temperature parameter stored in the 
Global LUT, we utilized the `amsv_utils_sync_global macro, assigning the internal variable temp to store the global 
temperature value. 

The code also demonstrates block-level assertions generated by MiM based on the range column in the ports table 
shown in Fig. 5. These assertions detect and report block-level faults when input values deviate from normal operating 
conditions. Leveraging the AMSV utility framework, these crucial block-level assertions can be reported directly to 
the system-level testbench, facilitating debugging and early bug detection in the design. 

To test safety-critical scenarios, we integrated a failure mechanism into the thermal shutdown (TSD) model using 
the AMSV utility framework. This framework synchronizes with a global parameter called tsd_force_fail, utilizing 
the `amsv_utils_sync_globals macro. By connecting the global parameter tsd_force_fail with the TSD model, we can 
override the default behavior of the TSD directly from the testbench. When tsd_force_fail is enabled, the TSD 
bypasses its normal shutdown response, even as the temperature rises. Fig. 7 illustrates the code implementing this 
failure mechanism within the TSD model. 

 

 
 

Figure 6: AMSV utility framework-enhanced VCO model with global temperature parameter effect. 



 
 

Figure 7: Code snippet of TSD model synchronization with global parameter tsd_force_fail to simulate failure mechanism. 
 

C. Integrating the AMSV Framework to UVM System Level Testbench 
To enable the AMSV utilities within the UVM testbench, we start by importing the amsv_utils_pkg into the 

testbench top level and creating a singleton instance of the AMSV utility class using the create_amsv_utils method 
provided in the package. This singleton instance can then be accessed throughout the UVM testbench by setting it via 
the UVM configuration database. With this setup, the UVM testbench can fully leverage AMSV utility methods, 
enabling the generation of real-world scenarios that were previously challenging to recreate with traditional 
approaches. Fig. 8 illustrates the code used to integrate the framework into the top level of the UVM testbench and 
configure it via the UVM configuration database. 

 

 
Figure 8: AMSV utility framework in UVM testbench top-level with configuration database integration. 

 
 
 



Once the AMSV utility object is accessible in the test case (through the configuration database inside the 
build_phase), it can be used to initialize parameters that impact the model’s behavior. In the code shown in Fig. 9, we 
initialize the global parameter called temperature and define a variable called tsd_force_fail to simulate failure in the 
TSD block under critical conditions, allowing us to verify system responses to extreme scenarios. 

 

 
Figure 9: Initialization of AMSV utility global parameters in UVM test case 

 
The following section explores several key verification scenarios made possible with the AMSV Utility framework, 

utilizing the initialized parameters shown in Fig. 9. 
 

D. Test Cases for AMSV Utility Global Parameter Variation and System Behavior Verification 
We subjected the PLL to several test cases to thoroughly evaluate it under various conditions set by the AMSV 

utility framework. 
1) The global temperature is initialized to a nominal value of 27°C, where we expect the PLL to achieve a stable 

lock. 
2) The temperature is gradually increased to 60°C, and we anticipate the PLL maintaining its lock, as the feedback 

loop can compensate for this slow temperature change. 
3) Next, the temperature is rapidly increased to 65°C. We expect the PLL controller from the digital side to adjust 

the central frequency of the VCO and achieve the PLL lock within a 250µs limit, verifying the system’s ability to 
handle sudden thermal changes. 

4) The temperature is set beyond the operational range, reaching 85°C, where the TSD block is expected to trigger 
and shut down the PLL for safety. This test verifies the TSD's protective functionality. 

5) The temperature is then lowered to 65°C, within the safe range. We expect the PLL block to resume operation 
with the TSD block becoming inactive, ensuring proper recovery from shutdown. 

6) Using the AMSV Utility, we simulate a failure in the TSD block by setting the parameter tsd_force_fail to 1, 
disabling the TSD's shutdown function. In this scenario, we set the temperature to 90°C to observe whether the system 
can recover the PLL and whether it has any internal safety features to ensure reliable functionality under such critical 
conditions. 

Fig. 10 illustrates the implementation of these test cases within the run_phase of the UVM test case code, 
highlighting how the global parameters of the framework are adjusted for each scenario to assess the system’s response 
to varying conditions. 

 
 



 
Figure 10: UVM test case for system behavior verification with AMSV utility global parameter changes 

 
V.   RESULTS & DISCUSSION 

Based on the test case scenarios described above, we can observe the system's response to temperature changes and 
safety conditions enabled by the AMSV Utility framework. Fig. 11 presents the simulation waveform, annotated to 
illustrate results corresponding to test cases 1 to 6. Each annotation marks a distinct scenario, highlighting key 
observations such as PLL lock status, temperature changes, TSD activation, and system recovery, providing a visual 
representation of the system's response under each test condition. 

The following results provide insights into how the design behaves under each test case scenario: 
1) The temperature parameter is initially set to a nominal value of 27°C, and the power-up sequence is initiated, 

resetting the design using the porb signal. After the reset sequence completes, the PLL establishes a lock, indicated 
by the lock bit being set to high on the waveform. This initial setup confirms the system can achieve stability under 
normal temperature conditions. 

2) When the temperature is gradually raised to 60°C, the PLL maintains its lock as expected, demonstrating that the 
loop compensates effectively for a slow-moving temperature increase. This gradual adjustment simulates typical 
operating conditions where the system must adapt to minor thermal fluctuations without losing stability. 

3) With an abrupt temperature rise to 65°C, the PLL lock disengages, and the system attempts to adjust the VCO 
center frequency, denoted as vcoCF on the waveform, to reestablish the lock. We observe that the PLL lock is 
successfully re-engaged once the vcoCF register sets an appropriate center frequency. This scenario verifies the 
system's ability to react to sudden thermal shifts, adjusting internal parameters accordingly to maintain functionality. 

4) When the temperature is set to 85°C, beyond the operating range of 27°C to 80°C, the thermal shutdown (TSD) 
mechanism activates. At this point, the tsd signal is set to high, disabling the pll_clk and sys_clk signals to protect the 
system. This test validates the TSD mechanism's ability to prevent operation in unsafe thermal conditions. 



 
Figure 11: Simulation Results Waveform Illustrating System Responses to Temperature Variations and TSD Scenarios 

 
5) The temperature is then lowered to 65°C, within the operational range. As expected, the tsd signal resets to low, 

and both pll_clk and sys_clk signals are reactivated, allowing the PLL to resume operation. This behavior confirms 
that the system can recover correctly and safely from a thermal shutdown once conditions are stable. 

6) To test system resilience under a TSD failure, the tsd_force_fail parameter is set, and the temperature is raised 
to 90°C. The tsd signal does not activate in this scenario despite exceeding safe limits. The system attempts to 
compensate by setting the vcoCF register to its maximum value ('d255) to regain the PLL lock; however, it is 
unsuccessful, resulting in the PLL frequency fluctuation as it continuously tries to match the phase. By simulating this 
failure scenario, the designer gains insight into potential vulnerabilities and behavior under TSD malfunctions, 
enhancing system reliability through real-world scenario testing. 

Overall, these observations demonstrate the AMSV utility framework's capability to simulate diverse environmental 
conditions and fault scenarios, providing invaluable insights into system behavior and robustness. The entire 
simulation was completed in approximately two minutes—a significant improvement over traditional transistor-level 
simulations, which cannot achieve such performance for comparable conditions. Furthermore, conventional 
testbenches often lack control over dynamic scenarios like abrupt temperature changes and fault conditions, making 
it challenging to validate complex interactions and safety mechanisms in real time. 

 
IV.   CONCLUSION 

This paper presented the AMSV utility framework as an innovative approach to address mixed-signal verification 
challenges in modern IC designs. By integrating analog models with the UVM testbench, the framework enables 
efficient system-level verification previously unattainable with traditional methods. 

Through the test cases, we demonstrated the framework’s capability to simulate complex real-world scenarios, such 
as temperature fluctuations, abrupt environmental changes, and fault conditions, all within a short simulation time of 
approximately two minutes. These capabilities highlight the AMSV utility framework’s ability to overcome the 
limitations of transistor-level simulations and conventional testbenches, which lack the flexibility and speed to handle 
such intricate conditions. 

Beyond the scenarios presented, the AMSV utility framework offers other valuable applications. It provides a robust 
solution for verifying mixed-signal connectivity, ensuring reliable interactions between analog and digital 
components. With real-time monitoring and direct access to block-level signals, verification teams can develop 
system-level assertions and enhance coverage of analog designs. This capacity for connectivity verification, assertion 
development, and detailed coverage metrics makes the AMSV framework a versatile tool that goes beyond traditional 
verification setups. 

The AMSV utility framework bridges crucial gaps by facilitating direct parameter control and real-time observation, 
reducing limitations that have long hindered traditional setups. Its ability to replicate complex environmental scenarios 
and dynamically interact with system parameters sets a new standard in efficiency, accuracy, and completeness for 



mixed-signal verification. As IC designs continue to grow in complexity, the framework provides a scalable and 
adaptable solution that can keep pace with evolving verification needs, making it a valuable asset for developing 
advanced applications in areas such as automotive safety, IoT, and AI-driven systems. 

In conclusion, the AMSV Utility framework represents a significant advancement in the field of mixed-signal 
verification, equipping engineers with the tools necessary to meet today’s verification demands and setting the stage 
for future innovations. Future extensions of this framework may include expanded model libraries and enhanced utility 
functions, further strengthening its role in the verification process. 
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