
UVM Testbench Automation
for AMS Designs

Jonathan David – Innophase Inc.

Henry Chang – Designer's Guide Consulting, Inc.

Outline

• The Analog TB generation problem

• Designing a standard TB

• A generic UVM agent design

• Automating TB construction

• Results

• Resources

Why Long delays
until first test of mixed-signal designs?
Per design:

• Select test approach

• Build components
• stimulate inputs
• observe outputs

• Assemble
• DUT
• test components

• Manage
• Error reports
• Test checking

Result:

• Wild variations
• Per design
• Per verifier or team
• Per company

• More TB time => Less Testing
• Test quality/quantity suffers

Importance:
• Early System level
• Control Sequencing •A Faster way?

Designing a Standard Test-bench
Select a standard framework

Design test-bench approach adaptable to any design.

UVM: the Incumbent Framework
(for digital design verification)

Pro

• Available training material

• digital team (probably) uses
• Possible help source

• Built in:
• Messaging (Fatal, Err, Warn, Info)
• Phasing
• Sequence management
• Randomization
• Test parallelization

Con

• Complicated

• Available training focused on
digital bus transactions.

• Debugging also complicated

Alternatives?

Models-in-Minutes for the System or Chip-
Level Test-bench?
• MiM generates models

• MiM generates block-level
testbenches
• Model validation

• SystemVerilog RNM / AMS model
vs Schematic

• TB easy to use
• small designs

• model testing and validation

• Limited above block-level
IP top, chip-level

• Poor fit where:
• Many sub-function types

• 100+ control signals

• Multiple test scenarios

• Not selected as full design
framework

Approach: Manage Complexity
Standardize, Abstract, Automate
• Standardize:

• Reusable standard agents
• Stimulus generation patterns
• Observation collection patterns

• Abstract:
• Single file to edit
• “Simple” data structure
• Available Editor Support

• Automate:
• Python
• Jinja template rendering

• Agents:
• Autb_generic agent
• Autb_csr_agent

• Templated TB top with
• Power, Bias, (other) Analog
• Register, (other) Digital

• Python dictionary
• NextedText format+ Python code and

Jinja2 for code templates

• Python scripts
• Jinja Templates

Standard AUTB Construction

Static control signals

Dynamic
(Clock and data)
signals

Static voltages and currents
Sources and instruments

Dynamic analog
Signal generation
observation

adrive module language
(V-AMS or SV-RNM)

adapted based on dut

TB: Adapter block per IF

ENV: agent per IF

A Generic UVM Agent Design
Since we select UVM can we abstract away some complexity?

AUTB Generic IF
Interface -> sequence_item -> driver, monitor, agent

• Associative arrays

• String functions for get put
• String <->logic variable

• String <-> real variables

• String index
• easy access to values by name.

Flexibility: Key Requirement

• Modify per case:
• Sequences

• Adapter module

AUTB Generic Sequence Item (base)

Contains: same associative arrays
adds housekeeping variables

Base: simple string comparison

(similar for convert2string, copy etc)

AUTB Generic Driver

Passes sequence item to the interface Monitor is similar, and collects if
changes, and puts them in an item.

• Here we chose to copy each
element in the array to the if

• This allows unchanged elements
in the interface to persist

• Separate sequences to manage
subsets of variables simply.

AUTB CSR Interface and Agent

• Similar to generic agent

• Associative arrays:
• int indexed by string.

• Because Many registers
• conversions (int<->string) might

affect performance

• Adds delay function
• mimics bus transaction delays.

Automating Testbench Creation

Automation Work Flow
Colored boxes show the inputs needed

Example Jinja Template
Data structure(dictionary) passed to template render engine
Included: dictionaries, lists, variables with their values
variety of functions for output interpolation

Dict vartest

loop

Function defined Function used
Simple var

Demo Design Data Structure
NestedText format – some repeated sections are folded.

Simple Data modification here
drives UVM file generation.

Example Design Simulation
(Folded) DLL operation at startup locking locked

Vcntrl

2x clk in

~0.08v ~0.2v ~0.3v

locked

Doubler works

Results

• First iteration
• Initial development of flow, agents, templates and code
• 3 weeks from dut netlist to first test working.

• Second iteration
• Simplified and polished the flow
• Another 3 weeks from DUT netlist to full startup test working.

• Third iteration (and additional)
• Simple flow reuse with minor tweaks
• 1 day to build a simple example design and testbench and test
• (testcase for simulator issue)

Effort level of single person – seems to be productive use of time.

Future Plans

• Package code for command line use

• Add results checking
• Enabling randomization.

• Provide generalized support for dynamic analog signals.

Resources

• Agent and template Code examples at
https://github.com/jbdavid-inno/analog-uvm-tb .

• Example DUT with generated files are published at
https://github.com/jbdavid-inno/simple_uvm_testcase .

• MiM (designers-guide.com)

• Visual Studio Code(Microsoft)

• Jinja.palletsprojects.com

• Verification Academy

• Google/Bing search

• NestedText.org

• Python.org

• IEEE.org

Questions?
Jonathan’s Email: jdavid@innophaseinc.com

Henry’s Email: henry@designers-guide.com

mailto:jdavid@innophaseinc.com
mailto:henry@designers-guide.com

	Default Section
	Slide 1: UVM Testbench Automation for AMS Designs
	Slide 2: Outline
	Slide 3: Why Long delays until first test of mixed-signal designs?
	Slide 4: Designing a Standard Test-bench
	Slide 5: UVM: the Incumbent Framework (for digital design verification)
	Slide 6: Models-in-Minutes for the System or Chip-Level Test-bench?
	Slide 7: Approach: Manage Complexity Standardize, Abstract, Automate
	Slide 8: Standard AUTB Construction
	Slide 9: A Generic UVM Agent Design
	Slide 10: AUTB Generic IF Interface -> sequence_item -> driver, monitor, agent
	Slide 11: AUTB Generic Sequence Item (base)
	Slide 12: AUTB Generic Driver
	Slide 13: AUTB CSR Interface and Agent
	Slide 14: Automating Testbench Creation
	Slide 15: Automation Work Flow
	Slide 16: Example Jinja Template
	Slide 17: Demo Design Data Structure
	Slide 18: Example Design Simulation
	Slide 19: Results
	Slide 20: Future Plans
	Slide 21: Resources
	Slide 22: Questions?

